Enzymatic Kinetic Isotope Effects from First-Principles Path Sampling Calculations
نویسندگان
چکیده
منابع مشابه
Enzymatic Kinetic Isotope Effects from First-Principles Path Sampling Calculations.
In this study, we develop and test a method to determine the rate of particle transfer and kinetic isotope effects in enzymatic reactions, specifically yeast alcohol dehydrogenase (YADH), from first-principles. Transition path sampling (TPS) and normal mode centroid dynamics (CMD) are used to simulate these enzymatic reactions without knowledge of their reaction coordinates and with the inclusi...
متن کاملEnzymatic single-molecule kinetic isotope effects.
Ensemble-based measurements of kinetic isotope effects (KIEs) have advanced physical understanding of enzyme-catalyzed reactions, but controversies remain. KIEs are used as reporters of rate-limiting H-transfer steps, quantum mechanical tunnelling, dynamics and multiple reactive states. Single molecule (SM) enzymatic KIEs could provide new information on the physical basis of enzyme catalysis. ...
متن کاملEffects of disorder in metallic systems from First-Principles calculations
In this thesis, quantum-mechanical calculations within density-functional theory on metallic systems are presented. The overarching goal has been to investigate effects of disorder. In particular, one of the properties investigated is the bindingenergy shifts for core electrons in binary alloys using different theoretical methods. These methods are compared with each other and with experimental...
متن کاملAccelerating quantum instanton calculations of the kinetic isotope effects.
Path integral implementation of the quantum instanton approximation currently belongs among the most accurate methods for computing quantum rate constants and kinetic isotope effects, but its use has been limited due to the rather high computational cost. Here, we demonstrate that the efficiency of quantum instanton calculations of the kinetic isotope effects can be increased by orders of magni...
متن کاملAmmonia synthesis from first-principles calculations.
The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinel. When the size distribution of ruthenium particles measured by transmission electron microscopy was u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Theory and Computation
سال: 2016
ISSN: 1549-9618,1549-9626
DOI: 10.1021/acs.jctc.5b01169